Introduction
Interventional procedures using fluoroscopic guidance are increasing in frequency and fluoroscopy times. These procedures are performed in a variety of locations and for a wide range of conditions. These prolonged fluoroscopy times can result in increased radiation exposure for both the patient and the healthcare providers. The purpose of this study is to investigate the levels of ionizing radiation exposure to various members of the interventional team during diagnostic and interventional fluoroscopy procedures. The study aims to provide insights into the factors that influence radiation exposure and to identify strategies for reducing it.

Materials and Methods
The data was compiled from a Biplanar V5000 (Phillips Medical Systems) system at Weill Cornell Medical College. The data was collected during diagnostic and interventional procedures in the Heart and Vascular Center of the hospital. The data was collected using a 3D radiation measurement device and a 2D multifunctional radiation measurement device. A total of 10 interventional procedures were included in the study. The data was analyzed using statistical software.

Results
The results showed that the exposure levels to various members of the interventional team were significantly different for different projections. The exposure levels were highest for the lateral projection, followed by the AP projection and then the biplane projection. The exposure levels were also higher for the interventionalist than for the anesthesiologist, nurse, and technician. The exposure levels were also higher for the procedures performed with the patient supine than for the procedures performed with the patient prone.

Discussion
Radiation exposure to interventionalists performing interventional procedures can be reduced to negligible levels by implementing simple strategies. These strategies can also be expanded to significant levels by reducing the time spent in the fluoroscopy field. The results of this study provide a basis for developing strategies to reduce radiation exposure and to inform the development of policies to protect healthcare providers from radiation exposure.

Conclusion
Pretreatment is an important factor influencing radiation exposure during interventional procedures. By reducing the number of procedures that require radiation exposure, the exposure levels can be significantly reduced. The results of this study highlight the importance of radiation reduction strategies and the need for further research to develop effective strategies to reduce radiation exposure during interventional procedures.